
12 

Robust Feedback Linearization Control 
for Reference Tracking and Disturbance 

Rejection in Nonlinear Systems 

Cristina Ioana Pop and Eva Henrietta Dulf 
Technical University of Cluj, Department of Automation, Cluj-Napoca 

Romania 

1. Introduction  

Most industrial processes are nonlinear systems, the control method applied consisting of a 
linear controller designed for the linear approximation of the nonlinear system around an 
operating point. However, even though the design of a linear controller is rather 
straightforward, the result may prove to be unsatisfactorily when applied to the nonlinear 
system. The natural consequence is to use a nonlinear controller.  
Several authors proposed the method of feedback linearization (Chou & Wu, 1995), to 
design a nonlinear controller. The main idea with feedback linearization is based on the fact 
that the system is no entirely nonlinear, which allows to transform a nonlinear system into 
an equivalent linear system by effectively canceling out the nonlinear terms in the closed-
loop (Seo et al., 2007). It provides a way of addressing the nonlinearities in the system while 
allowing one to use the power of linear control design techniques to address nonlinear 
closed loop performance specifications. 
Nevertheless, the classical feedback linearization technique has certain disadvantages 
regarding robustness. A robust linear controller designed for the linearized system may not 
guarantee robustness when applied to the initial nonlinear system, mainly because the 
linearized system obtained by feedback linearization is in the Brunovsky form, a non robust 
form whose dynamics is completely different from that of the original system and which is 
highly vulnerable to uncertainties (Franco, et al., 2006). To eliminate the drawbacks of 
classical feedback linearization, a robust feedback linearization method has been developed 
for uncertain nonlinear systems (Franco, et al., 2006; Guillard & Bourles, 2000; Franco et al., 
2005) and its efficiency proved theoretically by W-stability (Guillard & Bourles, 2000). The 
method proposed ensures that a robust linear controller, designed for the linearized system 
obtained using robust feedback linearization, will maintain the robustness properties when 
applied to the initial nonlinear system. 
In this paper, a comparison between the classical approach and the robust feedback 
linearization method is addressed. The mathematical steps required to feedback linearize a 
nonlinear system are given in both approaches. It is shown how the classical approach can 
be altered in order to obtain a linearized system that coincides with the tangent linearized 
system around the chosen operating point, rather than the classical chain of integrators. 
Further, a robust linear controller is designed for the feedback linearized system using loop-
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shaping techniques and then applied to the original nonlinear system. To test the robustness 
of the method, a chemical plant example is given, concerning the control of a continuous 
stirred tank reactor.  

The paper is organized as follows. In Section 2, the mathematical concepts of feedback 

linearization are presented – both in the classical and robust approach. The authors propose 

a technique for disturbance rejection in the case of robust feedback linearization, based on a 

feed-forward controller. Section 3 presents the H∞ robust stabilization problem. To 

exemplify the robustness of the method described, the nonlinear robust control of a 

continuous stirred tank reactor (CSTR) is given in Section 4. Simulations results for reference 

tracking, as well as disturbance rejection are given, considering uncertainties in the process 

parameters. Some concluding remarks are formulated in the final section of the paper. 

2. Feedback linearization: Classical versus robust approach 

Feedback linearization implies the exact cancelling of nonlinearities in a nonlinear system, 
being a widely used technique in various domains such as robot control (Robenack, 2005), 
power system control (Dabo et al., 2009), and also in chemical process control (Barkhordari 
Yazdi & Jahed-Motlagh, 2009; Pop & Dulf, 2010; Pop et al, 2010), etc. The majority of 
nonlinear control techniques using feedback linearization also use a strategy to enhance 
robustness. This section describes the mathematical steps required to obtain the final closed 
loop control structure, to be later used with robust linear control.  

2.1 Classical feedback linearization 
2.1.1 Feedback linearization for SISO systems 
In the classical approach of feedback linearization as introduced by Isidori (Isidori, 1995), 
the Lie derivative and relative degree of the nonlinear system plays an important role. For a 
single input single output system, given by: 

 
( ) ( )
( )

x f x g x u

y h x

= +
=

$
 (1) 

with nx ℜ∈ is the state, u is the control input, y is the output, f and g are smooth vector fields 

on nℜ and h is a smooth nonlinear function. Differentiating y with respect to time, we 

obtain: 

 
( ) ( )
( ) ( )f g

h h
y f x g x u

x x

y L h x L h x u

∂ ∂= +∂ ∂
= +

$

$
 (2) 

with ( ) ℜ→ℜn
f xhL : and ( ) ℜ→ℜn

g xhL : , defined as the Lie derivatives of h with respect 

to f and g, respectively. Let U be an open set containing the equilibrium point x0 , that is a 

point where f(x) becomes null – f(x0) = 0. Thus, if in equation (2), the Lie derivative of h with 

respect to g - ( )xhLg - is bounded away from zero for all x U∈  (Sastry, 1999), then the state 

feedback law: 

 ( )1
( )

( )
f

g

u L h x v
L h x

= − +  (3) 
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yields a linear first order system from the supplementary input v to the initial output of the 

system, y. Thus, there exists a state feedback law, similar to (3), that makes the nonlinear 

system in (2) linear. The relative degree of system (2) is defined as the number of times the 

output has to be differentiated before the input appears in its expression. This is equivalent 

to the denominator in (3) being bounded away from zero, for all x U∈ . In general, the 

relative degree of a nonlinear system at  0x U∈   is defined as an integer Ǆ satisfying: 

 
1

0

0 0 2

0

( ) , , ,...,

( )

i
g f

g f

L L h x x U i

L L h xγ
γ

−
≡ ∀ ∈ = −
≠  (4) 

Thus, if the nonlinear system in (1) has relative degree equal to Ǆ, then the differentiation of 
y in (2) is continued until: 

 ( ) ( )1( )
gf fy L h x L L h x uγ γ γ −= +  (5) 

with the control input equal to: 

 ( )1

1
( )

( )
f

g f

u L h x v
L L h x

γγ −= − +  (6) 

The final (new) input – output relation becomes: 

 ( )y vγ =  (7) 

which is linear and can be written as a chain of integrators (Brunovsky form). The control 
law in (6) yields (n-Ǆ) states of the nonlinear system in (1) unobservable through state 
feedback. 
The problem of measurable disturbances has been tackled also in the framework of feedback 
linearization. In general, for a nonlinear system affected by a measurable disturbance d: 

 
( ) ( ) ( )

( )

x f x g x u p x d

y h x

= + +
=

$
 (8) 

with p(x) a smooth vector field.  
Similar to the relative degree of the nonlinear system, a disturbance relative degree is 
defined as a value k for which the following relation holds:  

 
1

0 1

0

( ) ,

( )

i
p f

k
p f

L L h x i k

L L h x−
= < −
≠  (9) 

Thus, a comparison between the input relative degree and the disturbance relative degree 

gives a measure of the effect that each external signal has on the output (Daoutidis and 

Kravaris, 1989). If γ<k , the disturbance will have a more direct effect upon the output, as 

compared to the input signal, and therefore a simple control law as given in (6) cannot 

ensure the disturbance rejection (Henson and Seborg, 1997). In this case complex 

feedforward structures are required and effective control must involve anticipatory action 
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for the disturbance. The control law in (6) is modified to include a dynamic feed-

forward/state feedback component which differentiates a state- and disturbance-dependent 

signal up to γ–k times, in addition to the pure static state feedback component. In the 

particular case that k= Ǆ, both the disturbance and the manipulated input affect the output in 

the same way. Therefore, a feed-forward/state feedback element which is static in the 

disturbance is necessary in the control law in addition to the pure state feedback element 

(Daoutidis and Kravaris, 1989): 

 ( )1

1

1
( ) ( )

( )
pf f

g f

u L h x v L L p x d
L L h x

γ γγ −−= − + −  (10) 

2.1.1 Feedback linearization for MIMO systems 

The feedback linearization method can be extended to multiple input multiple output 
nonlinear square systems (Sastry, 1999). For a MIMO nonlinear system having n states and 
m inputs/outputs the following representation is used: 

 
( ) ( )( )

x f x g x u

y h x

= +
=

$
 (11) 

where nx ℜ∈ is the state, mu ℜ∈ is the control input vector and my ℜ∈ is the output vector. 

Similar to the SISO case, a vector relative degree is defined for the MIMO system in (11). The 

problem of finding the vector relative degree implies differentiation of each output signal 

until one of the input signals appear explicitly in the differentiation. For each output signal, 

we define Ǆj as the smallest integer such that at least one of the inputs appears in  j

jy
γ

:  

 ( )1

1

j j j

i

m

j g j ij f f
i

y L h L L h u
γ γ γ −

=
= +∑  (12) 

and at least one term 1 0( )( ) )j

ig j ifL L h u
γ − ≠  for some x (Sastry, 1999). In what follows we 

assume that the sum of the relative degrees of each output is equal to the number of states of 
the nonlinear system. Such an assumption implies that the feedback linearization method is 
exact. Thus, neither of the state variables of the original nonlinear system is rendered 
unobservable through feedback linearization. 
The matrix M(x), defined as the decoupling matrix of the system, is given as: 

 

( ) ( )
( ) ( )

11 1

1

1 1

1

1 .....

.... .... ....

....

p

m

p p

m

rr
g g mf f

r r
g m g mf f

L L h L L h

M

L L h L L h

−−

− −

⎡ ⎤⎢ ⎥⎢ ⎥= ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦
 (13) 

The nonlinear system in (11) has a defined vector relative degree mrrr ,......, 21 at the point 

0x if ( ) 0≡xhLL i
k
fgi

, 20 −≤≤ irk  for i=1,…,m and the matrix M( 0x ) is nonsingular. If the 

vector relative degree mrrr ,......, 21  is well defined, then (12) can be written as: 
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1
1

22

1
1 1

222 ( )

m m

rr
f

rr
f

r r m
m mf

L hy u

uL hy
M x

uy L h

⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥= +⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦ ⎣ ⎦
BB B

 (14) 

Since M( 0x ) is nonsingular, then M(x) mm×ℜ∈ is nonsingular for each Ux∈ . As a 

consequence, the control signal vector can be written as:  

 

1

2

1

21 1( ) ( ) ( ) ( )

m

r
f

r
f

c c

r
mf

L h

L h
u M x M x v x x v

L h

α β− −

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥= − + = +⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦
B

 (15) 

yielding the linearized system as:  

 

1

2

1 1

22

m

r

r

r
m

m

y v

vy

vy

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
BB

 (16) 

The states x undergo a change of coordinates given by: 

 1 2 11 1
1 1 2 2f f f

T
mrr r

c m mx y L y y L y y L y−− −⎡ ⎤= ⎣ ⎦A A A A A  (17) 

The nonlinear MIMO system in (11) is linearized to give: 

 c c c cx A x B v= +$  (18) 

with

1 1 2 1

2 1 2 2

1 2 3

0 0

0 0

0 0 0

m

m m m m

c r r r r

r r c r rm
c

r r r r r r c

A ....

A ....
A

A

× ×
× ×

× × ×

⎡ ⎤⎢ ⎥⎢ ⎥= ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦
B B B B

and

⎥⎥
⎥⎥
⎥

⎦

⎤

⎢⎢
⎢⎢
⎢

⎣

⎡
=

×××

××
××

mmmm

m

m

crrrrrr

rrcrr

rrrrc

c

B

....B

....B

B

321

2212

1211

000

00

00

BBBB
, where each 

term individually is given by: 

⎥⎥
⎥⎥
⎥

⎦

⎤

⎢⎢
⎢⎢
⎢

⎣

⎡
=

1000

0....10

0....01

BBBBicA and [ ]T10....00=
icB . 

In a classical approach, the feedback linearization is achieved through a feedback control 
law and a state transformation, leading to a linearized system in the form of a chain of 
integrators (Isidori, 1995). Thus the design of the linear controller is difficult, since the 
linearized system obtained bears no physical meaning similar to the initial nonlinear system 
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(Pop et al., 2009). In fact, two nonlinear systems having the same degree will lead to the 
same feedback linearized system. 

2.2 Robust feedback linearization 

To overcome the disadvantages of classical feedback linearization, the robust feedback 

linearization is performed in a neighborhood of an operating point, 0x . The linearized 

system would be equal to the tangent linearized system around the chosen operating point. 

Such system would bear similar physical interpretation as compared to the initial nonlinear 

system, thus making it more efficient and simple to design a controller (Pop et al., 2009; Pop 

et al., 2010; Franco, et al., 2006).  
The multivariable nonlinear system with disturbance vector d, is given in the following 
equation:  

 
( ) ( )( )

( )x f x g x u p x d

y h x

= + +
=

$
 (19) 

where nx ℜ∈ is the state, mu ℜ∈ is the control input vector and my ℜ∈ is the output vector. 

In robust feedback linearization, the purpose is to find a state feedback control law that 

transforms the nonlinear system (19) in a tangent linearized one around an equilibrium 

point, 0x : 

 z Az Bw= +$  (20) 

In what follows, we assume the feedback linearization conditions (Isidori, 1995) are satisfied 

and that the output of the nonlinear system given in (19) can be chosen as: )x()x(y λ= , 

where )]x().....x([)x( mλλλ 1= is a vector formed by functions )x(iλ , such that the sum of 

the relative degrees of each function )x(iλ to the input vector is equal to the number of 

states of (19).  

With the (A,B) pair in (20) controllable, we define the matrices L( nm× ), T( nn × ) and 

R( mm× ) such that (Levine, 1996):  

 
( ) 1

c

c

T A BRL T A

TBR B

−− =
=  (21) 

with T and R nonsingular. 
By taking: 

 1 1
cv LT x R w− −= +  (22) 

And using the state transformation:  

 1
cz T x−=  (23) 

the system in (18) is rewritten as: 

 ( )1 1 1 1
c c c c c c c c c cx A x B LT x B R w A B LT x B R w− − − −= + + = + +$  (24) 
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Equation (23) yields: 

 1
c cz T x x Tz−= ⇒ =  (25) 

Replacing (25) into (24) and using (21), gives: 

 

( ) ( )
( )( )

1 1 1 1 1 1

1 1 1 1 1

1 1 1 1 1 1

c c c c c c

c c c

Tz A B LT Tz B R v z T A B LT Tz Τ B R v

T A Tz T B LT Tz T B R v

z T T A BRL T Tz T TBRLT Tz T TBRR v

A BRL z BRLz Bv Az Bv

− − − − − −
− − − − −
− − − − − −

= + + ⇒ = + + =
= + +
= − + + =
= − + + = +

$ $

$
 (26) 

resulting the liniarized system in (20), with )( 0xfA x∂= and )( 0xgB = . 
The control signal vector is given by:  

 1 1( ) ( ) ( ) ( ) ( ) ( ) ( )c c c c c cu ǂ x ǃ x w ǂ x ǃ x LT x ǃ x R v ǂ x ǃ x v− −= + = + + = +  (27) 

The L, T and R matrices are taken as: )()( 00 xαxML cx∂−= , )( 0xxT cx∂= , 

)0
1 xMR (
−= (Franco et al., 2006; Guillard și Bourles, 2000).  

Disturbance rejection in nonlinear systems, based on classical feedback linearization theory, 
has been tackled firstly by (Daoutidis and Kravaris, 1989). Disturbance rejection in the 
framework of robust feedback linearization has not been discussed so far.  
In what follows, we assume that the relative degrees of the disturbances to the outputs are 
equal to those of the inputs. Thus, for measurable disturbances, a simple static feedforward 
structure can be used (Daoutidis and Kravaris, 1989; Daoutidis et al., 1990). The final closed 
loop control scheme used in robust feedback linearization and feed-forward compensation 
is given in Figure 1, (Pop et al., 2010). 
 

 

Fig. 1. Feedback linearization closed loop control scheme 
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or the nonlinear system given in (19), the state feedback/ feed-forward control law is given by: 

 ( ) ( ) ( )u ǂ x ǃ x v Ǆ x d= + −  (28) 

with ( )ǂ x and ( )ǃ x as described in (27), and 1( ) ( ) ( )Ǆ x M x p x−= . 

3. Robust H∞ controller design 

To ensure stability and performance against modelling errors, the authors choose the 
method of McFarlane-Glover to design a robust linear controller for the feedback linearized 
system. The method of loop-shaping is chosen due to its ability to address robust 
performance and robust stability in two different stages of controller design (McFarlane and 
Glover, 1990). 
The method of loopshaping consists of three steps: 

Step 1. Open loop shaping  

Using a pre-weighting matrix IW and/or a post-weighting matrix oW , the minimum and 

maxiumum singular values are modified to shape the response. This step results in an 

augmented matrix of the process transfer function: Ios WPWP = .  
 

 

Fig. 2. Augmented matrix of the process transfer function 

Step 2. Robust stability  

The stability margin is computed as ( )
∞

−−−⎥⎦
⎤⎢⎣

⎡= 11

max

~
inf

1
ss

orstabilizatK

MKPI
K

I

ε
, where 

sss NMP
~~ 1−= is the normalized left coprime factorization of the process transfer function 

matrix. If 1max <<ε , the pre and post weighting matrices have to be modified by relaxing 

the constraints imposed on the open loop shaping. If the value of maxε is acceptable, for a 

value maxε<ε  the resulting controller - aK  - is computed in order to sati1sfy the following 

relation:  

 ( ) 1 1
s a s

a

I
I P K M ε

K

− −
∞

⎡ ⎤ − ≤⎢ ⎥⎣ ⎦
#  (29) 

 

Fig. 3. Robust closed loop control scheme 

www.intechopen.com



Robust Feedback Linearization Control 
for Reference Tracking and Disturbance Rejection in Nonlinear Systems 

 

281 

Step 3. Final robust controller  

The final resulting controller is given by the sub-optimal controller aK  weighted with the  

matrices IW and/or oW : oaI WK WK = . 

Using the McFarlane-Glover method, the loop shaping is done without considering the 

problem of robust stability, which is explcitily taken into account at the second design step, 

by imposing a stability margin for the closed loop system. This stability margin maxε is an 

indicator of the efficiency of the loopshaping technique.  
 

 
 

Fig. 4. Optimal controller obtained with the pre and post weighting matrices 

The stability of the closed loop nonlinear system using robust stability and loopshaping is 
proven theoretically using W-stability (Guillard & Bourles, 2000; Franco et al., 2006). 

4. Case study: Reference tracking and disturbance rejection in an isothermal CSTR 

The authors propose as an example, the control of an isothermal CSTR. A complete 
description of the steps required to obtain the final feedback linearization control scheme - 
in both approaches – is given. The robustness of the final nonlinear H∞ controller is 
demonstrated through simulations concerning reference tracking and disturbance rejection, 
for the robust feedback linearization case.  

4.1 The isothermal continuous stirred tank reactor 

The application studied is an isothermal continuous stirred tank reactor process with first 

order reaction: 

 A B P+ →  (30) 

Different strategies have been proposed for this type of multivariable process (De Oliveira, 

1994; Martinsen et al., 2004; Chen et al., 2010). The choice of the CSTR resides in its strong 

nonlinear character, which makes the application of a nonlinear control strategy based 

directly on the nonlinear model of the process preferable to classical linearization methods 

(De Oliveira, 1994).  

The schematic representation of the process is given in Figure 5.  

The tank reactor is assumed to be a well mixed one. The control system designed for such a 

process is intended to keep the liquid level in the tank – x1- constant, as well as the B 

product concentration – x2, extracted at the bottom of the tank. It is also assumed that the 

output flow rate Fo is determined by the liquid level in the reactor. The final concentration x2 

is obtained by mixing two input streams: a concentrated one u1, of concentration CB1 and a 

diluted one u2, of concentration CB2. The process is therefore modelled as a multivariable 

system, having two manipulated variables, u =  [u1 u2]T and two control outputs: x = [x1 x2]T.  
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The process model is then given as: 

 ( ) ( ) ( )
1

1 2 1 1

2 1 2 2 2
1 2 2 2 2

1 1 21
B B

dx
u u k x

dt
dx u u k x

C x C x
dt x x x

= + −
= − + − − +

 (31) 

with the parameters’ nominal values given in table 1. The steady state operating conditions 
are taken as x1ss=100 and x2ss=7.07, corresponding to the input flow rates: u1s =1 and u2s =1. 
The concentrations of B in the input streams, CB1 and CB2, are regarded as input 
disturbances. 
 

 

Fig. 5. Continuous stirred tank reactor (De Oliveira, 1994) 

 

Parameter Meaning Nominal Value 

CB1 
Concentration of B in the 

inlet flow u1
24.9 

CB2 
Concentration of B in the 

inlet flow u2
0.1 

k1 Valve constant 0.2 

k2 Kinetic constant 1 

Table 1. CSTR parameters and nominal values 

From a feedback linearization point of view the process model given in (31) is rewritten as: 

 ( ) ( ) ( )
[ ]

1 1
1

1 22 2 1 2 2 2
2 2

1 12

1 2

1 1

1

B B

T

k x
x

u uk x C x C x
x

x xx

y x x

⎛ ⎞− ⎛ ⎞ ⎛ ⎞⎜ ⎟⎛ ⎞ ⎜ ⎟ ⎜ ⎟= + +− −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ ⎝ ⎠ ⎝ ⎠⎝ ⎠
=

$
$  (32) 
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yielding: 

 

1
1 1 2 2

2

1 1 1

2 2 2

( ) ( ) ( )

( )

( )

x
f x g x u g x u

x

y h x x

y h x x

⎛ ⎞ = + +⎜ ⎟⎝ ⎠
= =
= =

$
$

 (33) 

The relative degrees of each output are obtained based on differentiation: 

 

( )
( ) ( )1 1 1 1 2

1 2 2 22 2
2 1 22

1 121

B B

y k x u u

C x C xk x
y u u

x xx

= − + +
− −= − + ++

$

$
 (34) 

thus yielding r1=1 and r2=1, respectively, with r1 + r2 = 2, the number of state variables of the 
nonlinear system (32). Since this is the case, the linearization will be exact, without any state 
variables rendered unobservable through feedback linearization.  
The decoupling matrix M(x) in (13), will be equal to: 

 
( ) ( )( ) ( ) ( ) ( )1 2

1 2

0 0
1 2

1 2 1 20 0
1 2

1 1

1 1

( )
g f g f

B B

g f g f

L L h L L h
M x C x C x

L L h L L h x x

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥= = − −⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
 (35) 

and is non-singular in the equilibrium point x0 = [100; 7.07]T.  
The state transformation is given by: 

 [ ] [ ]1 2 1 2

T T
cx y y x x= =  (36) 

while the control signal vector is: 

 

1
11 1

1
2

( ) ( ) ( ) ( )
f

c c

f

L h
u M x M x v x x v

L h
α β− −⎡ ⎤⎢ ⎥= − + = +⎢ ⎥⎣ ⎦

 (37) 

with ( ) ( ) ( )
1

1 1

2 21 2 1 2
2

1 1 2

1 1

1

( )c B B

k x

x k xC x C x

x x x

α
− ⎡ ⎤−⎡ ⎤ ⎢ ⎥⎢ ⎥= − − − ⎢ ⎥⎢ ⎥ −⎢ ⎥⎢ ⎥ +⎣ ⎦ ⎣ ⎦

and ( ) ( )
1

1 2 1 2

1 1

1 1

( )c B Bx C x C x

x x

β
−⎡ ⎤⎢ ⎥= − −⎢ ⎥⎢ ⎥⎣ ⎦

. 

In the next step, the L, T and R matrices needed for the robust feedback linearization 
method are computed: 

 0 0

0-1

-2 -2

-0.1 10
( ) ( )

-0.11 10 -0.84 10
x cL M x ǂ x

⎛ ⎞⋅⎜ ⎟= − ∂ = ⎜ ⎟⋅ ⋅⎝ ⎠  (38) 

 0

1 0

0 1
( )x cT x x

⎛ ⎞= ∂ = ⎜ ⎟⎝ ⎠  (39) 
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1

0(
0.28 4.03

)
0.72 -4.03

R M x− ⎛ ⎞= = ⎜ ⎟⎝ ⎠  (40) 

The control law can be easily obtained based on (27) as:  

 

1

1

( ) ( ) ( )

( ) ( )

c c c

c

ǂ x ǂ x ǃ x LT x

ǃ x ǃ x R

−
−

= +
=  (41) 

while the linearized system is given as: 

 ( )
( )

1 21
10

1 22 20

3

20

0 1 1
2

7 07 7 071
0 100 100

1

/

. .B B

k
x

z z wC Ck x

x

−⎛ ⎞−⎜ ⎟ ⎛ ⎞⎜ ⎟⎜ ⎟= + − −− ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟+⎝ ⎠
$  (42) 

The linear H∞ controller is designed using the McFarlane-Glover method (McFarlane, et al., 

1989; Skogestad, et al., 2007) with loop-shaping that ensures the robust stabilization problem 

of uncertain linear plants, given by a normalized left co-prime factorization. The loop-

shaping ( ) ( ) ( )sP s W s P s= , with P(s) the matrix transfer function of the linear system given in 

(41), is done with the weighting matrix, W: 

 
14 10

W diag
s s

⎛ ⎞= ⎜ ⎟⎝ ⎠  (43) 

The choice of the weighting matrix corresponds to the performance criteria that need to be 

met. Despite robust stability, achieved by using a robust ∞H controller, all process outputs 

need to be maintained at their set-point values. To keep the outputs at the prescribed set-

points, the steady state errors have to be reduced.  The choice of the integrators in the 

weighting matrix W above ensure the minimization of the output signals steady state errors. 

To keep the controller as simple as possible, only a pre-weighting matrix is used (Skogestad, 

et al., 2007). The resulting robust controller provides for a robustness of 38%, corresponding 

to a value of 2.62=ε . 

The simulation results considering both nominal values as well as modelling uncertainties 

are given in Figure 6. The results obtained using the designed nonlinear controller show that 

the closed loop control scheme is robust, the uncertainty range considered being of ±20% for 

k1 and ±30% for k2.  

A different case scenario is considered in Figure 7, in which the input disturbances CB1 and 

CB2 have a +20% deviation from the nominal values. The simulation results show that the 

nonlinear robust controller, apart from its robustness properties, is also able to reject input 

disturbances.  

To test the output disturbance rejection situation, the authors consider an empiric model of a 

measurable disturbance that has a direct effect on the output vector. To consider a general 

situation from a feedback linearization perspective, the nonlinear model in (33) is altered to 

model the disturbance, d(t), as: 
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Fig. 6. Closed loop simulations using robust nonlinear controller a) x1 b) x2 c) u1 d) u2 

 

1
1 1 2 2

2

1 1 1

2 2 2

( ) ( ) ( ) ( )

( )

( )

x
f x g x u g x u p x d

x

y h x x

y h x x

⎛ ⎞ = + + +⎜ ⎟⎝ ⎠
= =
= =

$
$

 (44) 

with p(x) taken to be dependent on the output vector: 

 1

2

( )
x

p x
x

⎛ ⎞= ⎜ ⎟⎝ ⎠  (45) 

The relative degrees of the disturbance to the outputs of interest are: 1 1γ =  and 2 1γ = . Since 

the relative degrees of the disturbances to the outputs are equal to those of the inputs, a 

simple static feed-forward structure can be used for output disturbance rejection purposes, 

with the control law given in (28), with )(xα and )(xȕ determined according to (27) and 

)(xȖ being equal to: 
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 ( ) ( )
1

11
1 2 1 2

2

1 1

1 1

( ) ( ) ( ) B B

x
Ǆ x M x p x C x C x

x
x x

−
−

⎡ ⎤ ⎛ ⎞⎢ ⎥= = − − ⎜ ⎟⎢ ⎥ ⎝ ⎠⎢ ⎥⎣ ⎦
 (46) 
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Fig. 7. Input disturbance rejection using robust nonlinear controller a) x1 b) x2 c) u1 d) u2 

The simulation results considering a unit disturbance d are given in Figure 8, considering a 
time delay in the sensor measurements of 1 minute. The results show that the state 
feedback/feed-forward scheme proposed in the robust feedback linearization framework is 
able to reject measurable output disturbances. A comparative simulation is given 
considering the case of no feed-forward scheme. The results show that the use of the feed-
forward scheme in the feedback linearization loop reduces the oscillations in the output, 
with the expense of an increased control effort. 
In the unlikely situation of no time delay measurements of the disturbance d, the results 
obtained using feed-forward compensator are highly notable, as compared to the situation 
without the compensator. The simulation results are given in Figure 9. Both, Figure 8 and 
Figure 9 show the efficiency of such feed-forward control scheme in output disturbance 
rejection problems.  
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Fig. 8. Output disturbance rejection using robust nonlinear controller and feed-forward 
compensator considering time delay measurements of the disturbance d a) x1 b) x2 c) u1 d) u2 

5. Conclusions 

As it has been previously demonstrated theoretically through mathematical computations 

(Guillard, et al., 2000), the results in this paper prove that by combining the robust method 

of feedback linearization with a robust linear controller, the robustness properties are kept 

when simulating the closed loop nonlinear uncertain system. Additionally, the design of the 

loop-shaping controller is significantly simplified as compared to the classical linearization 

technique, since the final linearized model bears significant information regarding the initial 

nonlinear model. Finally, the authors show that robust nonlinear controller - designed by 

combining this new method for feedback linearization (Guillard & Bourles, 2000) with a 

linear H∞ controller - offers a simple and efficient solution, both in terms of reference 

tracking and input disturbance rejection. Moreover, the implementation of the feed-forward 

control scheme in the state-feedback control structure leads to improved output disturbance 

rejection.  
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Fig. 9. Output disturbance rejection using robust nonlinear controller and feed-forward 
compensator considering instant measurements of the disturbance d a) x1 b) x2 c) u1 d) u2 
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